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1. Introduction

Kwakernaak, in a seminal paper [6], introduced the notion of a fuzzy random variable as a
random variable whose values are not real but fuzzy numbers. Expectation and probabilities
relating to a fuzzy random variable are developed as images of a fuzzy set, representing the
fuzzy random variable, under appropriate mappings. Kwakernaak's constructions, or slight
variations of them, have received theoretical elaboration, primarily directed toward the
extension of classical probability laws. For example, Kruse [5] and Miyakoshi and Shimbo [8]
report on a strong law of large numbers. Boswell and Taylor [2] provide an analogue of the
central limit theorem for fuzzy random variables admitting a moment generating function,
while Puri and Ralescu [11] outline a theory similar to Kwakernaak's and derive a dominated
convergence theorem. Stein and Talati [14], following Nahmias [9], develop a theory
specifically for convex fuzzy random variables.

Fuzzy random variables have unique value in a modeling context because of their ability
to distinguish model components which are incompletely known due to stochastic variation
from components which are unknown due to imprecise measurement or inherent vagueness
in their quantification. In conventional practice the latter type of unknown is often treated as
a crisp value in a sensitivity study, or represented as a randomly varying quantity, and in
either case misconstrued. By contrast, fuzzy sets offer a conceptually faithful representation
of the nature of vague unknowns, and the rules of fuzzy logic supply an explicit framework for
manipulating and composing any number of vague quantities. When combined with the
treatment of stochastic quantities, as in fuzzy random variables, complex modeling problems
may be addressed. Moreover, the fuzzy sets obtained as end products of the modeling process
immediately summarize the amount and type of uncertainty remaining in computed values,
and so inform the interpretation and application of model conclusions.

In section 3 we present a straightforward application of fuzzy methods to an important
and ongoing defense problem, that of evaluating the susceptibility of an armored vehicle to
attack. The presence of vague information in this type of vulnerability modeling has been
cited by Schlegel, et. al. [13], who suggest fuzzy sets as a modeling tool. Section 3 begins with
an overview of current approaches to vulnerability assessment, indicating where fuzzy sets
may be appropriate in the modeling process. For illustration, an implementation using fuzzy
random variables is presented which achieves general applicability by utilizing an existing
knowledge base and existing computer models with only incidental revisions. Necessary
theoretical background is covered in section 2, and a brief discussion follows in section 4.

2. Fuzzy Random Variables

Kwakernaak [6,7] defines a fuzzy set f as a triple f = (A, t, p) consisting of a basic set A, a
logical proposition p which can be applied to every member of the basic set, and a function t
which assigns to every member x c A a truth value t(p(x)) indicating the appropriateness of
the proposition p as applied to x. Most authors suppress the proposition p notation, since it is
implicit in the organizing principle of the fuzzy set, and compose the proposition and truth
value into a membership function :A--+ [0, 1] which acts on the basic set, U(x) = t(p(x)).
Thus f would be written f = (A, p); we shall adopt this convention.



An a-level set corresponding to a given fuzzy set f = (A, A) is an ordinary non-fuzzy set,

denoted

L6 (f) = {x c AIj(x) > a}. (2.1)

A fuzzy number is a fuzzy set having the real line R as its basic set. The fuzzy number f, or its
membership function /1 is said to be unimodal if for every a e (0, 1], L (f) is convex.

Fuzzy random variables are constructed as a means of modeling phenomena which could
properly be described by ordinary real random variables defined on a probability space
(fl, F, P), but which are partially obscured by fuzzy perception of the real line. In particular,
if U0 is the underlying random variable and w is the outcome of a random experiment, the
exact value U0(w) is unobservable; instead, it is assumed that a fuzzy number f = (, X) is
known which characterizes the result U0(w). The mapping X:fl --+ S from the sample space fn
into the class of admissible membership functions S, given by X(w) = X, supplies a
membership function for each random outcome, and is called a (fuzzy) perception function.
To the observer who must perceive random outcomes via X, the identity of U0 is lost, and
there may be many reconstructions of U0 which are amenable to fuzzy perception. By the
standard operations of fuzzy logic [4], X generates a valuation function which applies to
random variables as entities. Namely, if U is an F-measurable random variable, then

y, (U) = inf X (U (w)) (2.2)

is the valuation of its suitability as a reconstruction of U0.

To ensure proper measurability relationships in the definition of a fuzzy random variable,
it is necessary to impose some structure on the perception function, X, and on the basic set
from which candidates for reconstruction of U0 are drawn. The reader is referred to
Kwakernaak [6] for a detailed exposition of structural requirements, and to [2] for some
simplifying modifications. Briefly, we admit as a basic set UF , the set of all F-measurable
random variables on f0, and enforce partial retention of the structure of (01, F, P) through the
requirement that for all a c (0, 1] the functions

U. (w) = inf {x c R IX, (x) _> a} (2.3)

and
O0

U0 (w) = sup {xcRIX (x)>a}

aremeasurable with respect to (fl, F). The sigma algebra generated by the random variables
U 0 , a c (0, 1] and U0 , a e (0, 1] will be denoted by a(X); the set of all o(X)-measurable
random variables on fl will be denoted by X.
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Letting UF be the collection of all F-measurable random variables on fl, the futzzy random
variable induced by X is defined to be the fuzzy set

X = (U-, 'x).

Some properties of a fuzzy random variable may be obtained directly by the extension

principle [14]. For example, the expectation of a fuzzy random variable X is a fuzzy number

EX = (R, E'X)

with membership function given by

AEX(X) = sup inf XU) (U (w))
U UF:EU =x w fl

= sup pX (U), x e R. (2.4)

U E UF: EU = x

In (2.4), E denotes the usual mathematical expectation.

A fuzzy rndom v-riable X is called unimodal if for each w E fl, the membership function
X is unimodal. Kwakernaak [6] shows that if X is unimodal the basic set UF may be
restricted to x, the set of all c(X)-measurable random variables on 0:

Theorem (2.1). If X is unimodal, then

PEX(X) = sup inf XU(w)), x ER. (2.5)
UEx:EU =x wefl

3. Vulnerability Modeling

Succinctly, vulnerability modeling is an attempt to characterize the interaction between a
target (armored vehicle, aircraft, bunker, ... ) and a munition (kinetic energy penetrator,
shaped charge, explosive device, ... ), and to assess quantitatively the damage related to the
target-munition encounter. Our focus here will be upon evaluating the susceptibility of an
armored vehicle to attack by a kinetic energy penetrator, and a class of vulnerability models
appropriate to this situation kr,,)wn as point-burst models. TANKILL, a model developed in
the United Kingdom, the VAST model, developed in the United States, the APAS model,
developed in Sweden, and the PVM model, developed in West Germany, are all examples of
modern point-burst vulnerability models [12].

Typically, perforation of armor by a projectile (penetrator) will generate a spray of armor
fragments inside the vehicle which, along with a portion of the projectile itself, may strike a
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number of internal components. The tasks for vu",erability assessment are to characterize
the fragment spray which follows a munitions impact, to determine which components of the
vehicle are struck, to evaluate how these components are affected individually, and to
summarize the consequences for the vehicle as a whole.

A vulnerability model will include one functional unit which employs mathematical sub-
models to simulate the physical phenomena governing armor penetration and fragment
formation. The sub-models themselves are complex entities, relying upon a variety of
assumptions, generally with limited experimental support. Thus they may be considered as
potential candidates for fuzzy extensions, as indeed may many aspects of vulnerability
assessment. However, for present purposes we simply accept that the vulnerability model has
at its disposal a characterization of the fragment spray resulting from any given munitions
impact. Also there will be a module supplying a geometric description of the vehicle,
including the layout of internal components, and such details of mechanical structure,
shielding, and hydraulics as are known and considered important.

Point-burst models simulate the trajectories of the fragments with a bundle of rays
emanating from the point where the penetrator (shotline) erupts through the interior surface
of the armor plate. Each ray is traced explicitly through the computer description of the
target vehicle to determine which components are likely to be struck (Figure 1). Interior
components may be struck by the shotline or by the fragment rays; in either case, pertinent
geometric data are recorded, including lists of components struck, impact obliquities, and
distances traveled between and through components. From such information the damage to
individual components must be assessed.

[rrgment rays

Fig. 1. Ray tracing behind armor.

Predicting the effects of fragment impacts on individual components is one of the most
important aspects of the point-burst vulnerability model, and one of the most troublesome.
The effect of one impact may be inconsequential, or it may functionally destroy the
component. The typical point-burst model includes a module for estimating the probability
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that a component will be destroyed, given that it is struck by a fragment. Often the only
damage mechanism which is overtly considered is perforation; usually ignored are such
possibilities as shock and blast effects, significant nondestructive damage, and the cumulative
effect of impacts from multiple fragments.

Another key element of the point-burst method is the linkage which relates component
damage to the degradation of total vehicle performance. The procedure for assessing
consequences of aggregate component damage varies among the different models, but
generally it involves probability theory, heuristics, and engineering judgement, in some
combination. We will limit ourselves here to one aggregate damage measure, called the
overall vehicle probability-of-kill, Pk, which we will describe as it is implemented in the VAST
model.

For a specific direction of attack, a selection of impact locations on the target is
determined by superimposing a rectangular grid (Figure 2) and choosing a single point of
impact within each grid cell. Then the VAST model, using the point-burst approach, provides
a corresponding probability-of-kill estimate for the vehicle given a hit in each cell i, denoted
by P.h, If an aim-point on the vehicle is designated, then eventual impact will occur in
various cells of the grid with relative frequencies given by a bivariate probability density
located at the aim-point. Taking the corresponding weighted average of the cell Pk h,5S, one
arrives at an overall estimate of the probability-of-kill, Pk, for the vehicle:

k EW PkIh, (3.1)

Fig. 2. Targcl dcscription with superimposcd rcctangular grid.

Figure 3 presents an illustrative vulnerability assessment of an encounter between an
armored vehicle and a kinetic energy penetrator. Each grid cell contains the conditional
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probability estimate that the tank will be killed should it sustain an impact in that cell. For
the rectangle featured in Figure 3, the point-burst model provides an estimated probability-
of-kill given a hit in that cell, Pk Ih, 0.19.
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The valu P re

The vlue k I h, rpresents a summary valuation of a complicated causal chain relating
munitions impact to vehicle functionality. As we have previously indicated, the quantitative
description of that causal chain is often arbitrary or incomplete. Experimental testing
required to provide data for estimation and model validation is destructive, and the data base
upon which these models are built may be modest, or in the case of conceptual systems,
nonexistent. In addition, while certain damage-related measurements (velocity of impact,
depth of penetration, component function, ...) may be determined within measurement error,
many others (structural deformation, fracturing, ...) may not.

There is a stochastic component already implemented in existing vulnerability models,
reflecting variation in outcome across replicate firings at the vehicle. Were the causal
relationships involved in the estimation of Pk Ih, completely specified, the uncertainty
remaining in PkIh could properly be represented by a confidence interval, obtained by
analysis of firing- to-firing variation. In applications of interest to us, however, fuzzy
unknowns inherent in the geometry of the vehicle and in the causal model are essential
contributors to the total uncertainty in P.Ik, Thus we have considered the introduction of
fuzzy set methods to the existing body of vulnerability software.

Certainly it is possible to use fuzzy sets to describe unknowns at any level of aggregation
in the causal chain, and then to compose the chain of effects via fuzzy random variables and
the operations of fuzzy logic. We have chosen to introduce fuzzy sets at a relatively high level
of aggregation, namely in the representation of the estimated cell probabilities, 9k Ih, The
reasons for this choice are two-fold. First, and most importantly, the impact cell is the level
of aggregation at which experienced modelers are most comfortable and best informed. (A
primary criterion for fuzzy set methodology should be its ability to incorporate heuristic
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judgement, in a manner appropriate to the problem at hand, as directed by the same heuristic
judgement). Second, there is a practical advantage in retaining, as a baseline, the
meticulously developed models and software which underlie current estimates of Pklh,
Then, by adopting fuzzy sets of suitable form to characterize the precision of cell
probabilities, the entire "fuzzification" process may be economically automated.

A particularly convenient numerical implementation results if we replace each cell PkIh,
with a fuzzy number whose membership function is illustrated in Figjure 4. The width of the
interval on which 1(x) assumes its maximum value is chosen to be a = Pklh, (1 - Pklh,)' the
variance of the Bernoulli distribution modeling the individual cell probabilities. The
introduction of the variance into the membership function is made to reflect the fact that
larger (smaller) variance corresponds to greater (less) uncertainty about the value of Pk h,"

1 -

0

a a a b b+O

Pt ', h," . PIK h. P. 1h.+ € 2

Fig. 4. Membership function for fuzzy Pk h,"

This procedure for constructing the fuzzy set is of course arbitrary, but qualitatively in
accord with common methods of evaluating Bernoulli probabilities. One may easily entertain
alternate formulations. Allowing for random variation in the site of munition impact, the
correspondence between impact location and the now fuzzy probability-of-kill defines a fuzzy
perception function, X(w) = Xw . The vulnerability calculation (3.1) carried out on fuzzy
P k h, is equivalent to computing the expected value of the discrete fuzzy random variable X
induced by the perception function X.

Since the membership functions in Figure 4 are unimodal, the expectation of X is a fuzzy
number EX with membership function given by

SEX(X) = sup inf X (U(w)), x c R. (3.2)

Ucx:EU =x wcfl

7



This expression can be evaluated using the ca-level sets (2.1). Given the family of level sets
L6 (), the membership function Atx(x) may be recovered with the aid of the formula

u(x) = sup (, [0, ]Ix c L6 (.}, x c R. (3.3)

For the membership functions shown in Figure 4, this computation can be simplified using
procedures given by Dubois and Prade [3], or Bonnisone [1]. They show that the membership
function may be represented as a four-tuple (ab,a,13) and that fuzzy arithmetic may be
carried out on fuzzy numbers of this type simply by operating on the coordinates of the four-
tuple. The relations

m + n - (a+c,b+d,a+-y,#+6) (3.4)

and

m x n = (ac, bd, a-y + ca-r-, bb+d# +/36)

for addition and multiplication of the fuzzy numbers M = (ab,af3) and n = (c,d,-y,6) are
sufficient for our purpose of fuzzifying the vulnerability calculation (3.1). For an arbitrary
membership function, an iterative algorithm on the a-level sets (3.3), detailed in Kwakernaak
[7] may be required.

Applying relations (3.4) to the data in Figure 3, we obtain for EX the membership
function shown in Figure 5. The interpretation of the resultant ,EX(x) is that estimates of
overall Pk in the interval [.18, .23] are, within our framework of uncertainty, wholly plausible.
The VAST model has been criticized for producing point estimates Pk, without an
accompanying interval estimate to gauge their accuracy. We offer one caution to the reader:
the impulse to take the level set L.90 (), say, and treat it formally as a 90% confidence
interval for Pk must be resisted; there are no probability statements carried by the a-level
sets.

PEN

.15 .18 .23 .26

Fig. 5. Membership function for expectation EX of fuzzy random variable X.
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4. Conclusion

We have modeled the effect of uncertainty in the cell Pk I h, estimates on the overall

probability-of-kill estimate Pk in a direct way, and distinguished between randomness and
uncertainty in the point-burst vulnerability model. Moreover, the framework is in place to
consider PkI h, membership functions far more intricate than the one shown in Figure 4.

A value such as P k seldom remains in isolation, and finds use in a larger strategic context.
The Pk value may serve as a parameter in large-scale war games, and is of value to armament
designers. Using fuzzy random variables and the rules of fuzzy logic, information from
diverse sources and with varying degrees of quantification may be coordinated. A decision-
maker in such a context then obtains a valuation of the combined strength of evidence for a
given decision, along with a diagnostic assessment of the evidence upon which that decision is
based. This is a significant methodological improvement.

9
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EX fuzzy expectation of a fuzzy random variable X
f a fuzzy set
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,i a fuzzy number

a fuzzy number
Pk probability-of-kill
PAk estimated probability-of-kill
'sIh, estimated conditional probability-of-kill
R the real line
S a class of admissible membership functions
U0  an ordinary random variable on n
UF the set of all F-measurable random variables on t
U. a measurable function
u., a measurable function
X a fuzzy perception function
X a fuzzy random variable induced by X
x a membership function corresponding to a random outcome
x the set of all a(x)-measurable random variables on n
A a membership function for a fuzzy set
A, a membership function for F-measurable random variable U
(f0, F, P) a general probability space
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